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1. Motivation

o Stability by linearization is a useful method to study stability of autonomous
(dynamic) systems only near an isolate equilibrium. It is a local result.

2. Local Stability by Linearization
1) Linearization

Consider the autonomous (dynamic) system given by
X'=f(x),

where xeB (0)={xeR"|||x||l<r} and feC'B,(0) with f(@0)=0, ie.
x =0 isanequilibriumt; or x(t)=0(t>0) is a constant solution of x'= f(X).
Since f eC'(B,(0)), using Tailor expansion, we know that
f(x) = f(0)+ Df (0) x+ g(x) = Df (0) x+ g(x),

where Df(O):Z—;h_O and g(x)= f(x)-Df(0)x, satisfying g(0)=0;

1d 1.d
9(x)=9()-9(0) = J,—-9(9x)ds = [ {_F ()~ Df (0)x}ds
1. d 1
=jo{mf (sx)x — Df (0)x}ds = jO{Df (sx)x — Df (0)x}ds

= [ {Df (s~ Df (0)}xds.

Itis noted that || sx||<|| x| as 0<s<1.Thus

19 ll=sup [[Df(y)—-Df (Ol x|l

Ly Iyl<Ixi
Then



Iimwzlim sup || Df (y)—Df(0)||=0.
=0 || x| X0 gy

Therefore its linearized system is given by

X' = AX,

where A= Df(0).

2) Linear Systems with Perturbation

Consider

X'= Ax+g(t, x),

where g(t, x) is continuous and locally Lipschitz in U containing the origin.

Theorem 9.1 (Stability Theorem) Let g(t, x) be continuous and locally Lipschitz
in U containing the origin. If

im 19601 _ o
=0 | x]

holds uniformly in t, where t>t;>0 and A has all eigenvalues with negative

real part, i.e. Red;(A)<0 for j=1,2,---,n, then x=0 of X'=Ax+g(t,x) is

uniformly asymptotically stable.

Proof. Since lim —” 9(t, )|

poo x| =0 holds uniformly, there exists ¢>0 for any given
x| — X

b >0 such that
g, x)||<b] x|l forall t>0,

provided || x|[<e. Then g(t,0)=0 for all t>0, i.e. x=0 is equilibrium of
X'=Ax+g(t, x). Since Rel;(A)<0 for j=12,---,n, we can find K>0 and
4 >0 (Clue: using the formula of e*) s.t.

[e* ) <Ke™ ™ for txt,.

For any ||x0||s5:% and t,>0 , there exists a unique solution of



X'=AX+9(t,x), denoted by x(t,t,, x,) for te[t,, @,). We will show that

@, =. We apply the formula given by Problem 2 of Homework in Lecture 6 to get

A(t-to) A(t-s)

X(t,ty, X,) =€ x0+j:e g(s, x(s,t,, X)) ds, te[t,, w,).

Then,
—u(t= t u(tes
Ix(tto, o) 1< Ke ™ [, [| 4], Ke ™ [g(s, x(s.ts, %)) 105, te[ty,@,).

Aslongas || x(t,t,, X,)||[<e forall te[t,, m,),then

I g(t, x(t, to, X)) [[SBIIX(E, ty, X)) |, telty, @)
So we have

1X( g, Xo) 1< Ke ™ || x, ||+ijj0e*”<“> 1X(s,tg, Xp)llds, te[ty, a,).

#) on both sides, we have

Multiplying e
e [ x(t, g, Xo) 11 < K[| X, ||+ij:0e"“*°) IX(3,t5, %) llds, te[ty, @,).

By Gronwall inequality we obtain

Kb(t—t,)

e I x(t t, X) IS K I X, [l e , telty, @,),

—(u—Kb) (t-tg)
Xt X ) IS K[ %, e “ P telt,, w,).

Since b >0 is arbitrarily and only local result we concern, we choose b :% >0,
and then we have

-2 (tto) £ (o)
I x(tt, X ) IS K| X, ]|e 2 <ge ? <g, te[t, m,).

It follows that @, = by Extension Theorem. Since 6>0 and b>0 are

independent of t,>0, x=0 is uniformly asymptotically stable, in fact it is

exponentially stable. o

Theorem 9.2 (Unstability Theorem) Let g(t,x) be continuous and locally
Lipschitz in U containing the origin. If

lim 19CE 0 _
woo x|

holds uniformly in t, where t>t,>0 and A has at least one eigenvalue with
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positive real part, i.e. Red; (A)>0,then x=0 of X"= Ax+g(t, x) is unstable.

Proof. Suppose that A has eigenvalues A, 4,,---,4, repeated according to their

n

(algebraic) multiplicity. There exists an invertible matrix P such that A=PJP ™,

where J is in Jordan normal form, i.e. J =diag(J,), where

_— 1 0 vas 0
0 A, 1 0
J;=| 0 0 - )
' Aoa 1
0 o 0 2

r

where 1=1,2,---,r1; Zni =n; n,=0. In order to get the elements of the off
i=1

diagonal line of J., all are the given scalar 7 >0, we need a technique to introduce
a matrix given by
H =diag(n, 7%, n"),

which has H ™" =diag(n™,77%,---,7™"). Then,

C=H"JH =diag(J)),

where
Aoow 10 0
0 Ayo 7 0
J=| 0 0 .
. Joa 7
0 0O 0 4

Then, by the transformation x=PHYy, x'=Ax+g(t, x) is transformed into
the form of

y'=Cy+h(t, y),

where h(t, y)=H 'P?g(t, PHYy). Since || g(t, x)||<b]| x| for ||x||<&, it follows
that



o

Ih(t, II<IH P IIIPH (bl y ]l for |ly]l< :
IPH

We now need only to prove that y(t) will leaves away from the origin when
y(t) is in the neighborhood of the origin.
The i™ componentof y'=Cy+h(t,y) has the form of either

yi=AYy +h(ty)
or

Yi=AYi+nYi +hity).
Denoted by j the indices for which Re1; >0, by k the indices for which
Red, <0.Let RM)=>|y,®)*, rt)=> ]y, (®|* andchoose >0 s..
i k
0<6ny<Re4; forall j;
and then for the given 7 >0, there exists 0<o <<1 s.t.
Ih W< nllyll for |lyll<é.
Suppose that y(t) is a solution of y'=Cy+h(t, y) with y(t,)=y, satisfying
ly,l|<o and r(t,) <R(t,). Then, as long as || y(t)||<o and r(t) <R(t), notice

that y;(t) may be complex valued because of a possible complex value of 4,, we

have

RO =01y, 01 =24y;®)-7,®)°F =23 (v;® -y, +y; ;1)
=2 Re(y;(®)-¥; (1)
=2) {Re(4;y;(®) ¥;®)+[nRe(y,..(1)-¥;()]+Re(¥;(Oh; . y)},

where the term in brackets [ ] appears or not appears. By Cauchy-Schwartz
inequality we have

PIETHORAVIEDI R THUORFVIE JZ' Yia®1 2NV, <RO):

| 2 Re(Y;®h; .y 1< 1y;Oh;(t.y)]



1
S\/Zlyj(t)IZZIh,-(t, IZ <RZ@O (I, I
j i
Since ||y(t)||<o and r(t)<R(t) areassumed, we have

R2@) [Ih(t, ) I<R2®) 7l yEO) < R? () 7y/RE) +r(t) <R?(t)7+/2R(t) <27 R(t);
and

2 Re(A;y;(0)-V;®)>67Dy;(0)-V;)=67 |y;®)° =67R(0).
i i i
Therefore, we have the inequality given by

%R'(t) > 67 R(t) =1 R(M) =277 R(t) =37 R(t)
Asimilar way for r(t) byusing ReA, <0 yields
%r’(t) <nr(t)+2nR(t) (Detail proof is for homework).
Aslongas [|y(t)||[<o and r(t)<R(t), we have
%(R’(t)— r'(t)) >n GR(t) —r(t)-2R(1)) =n (R(t) - r (1)) .
Solving this inequality with r(t,) <R(t,), we have

R(t)—r(t) > (R(t,)—r(t,))e” "™ forall t>t, st |[y(t)[|<5 and r(t)<R(t).

Then
Iy@® 12 =ZI YO+ 1y ® ZZI y, O -2y ®

= RO -r(t) > (R(t) ~r(t,)e”" ™
for all t>t, once ||y(t)||[<d and r(t)<R(t). So this solution y(t) leaves the

domain given by || y||<J, thisimpliesthat x=0 isunstable. o

Remark 9.1 The proof of Theorem 9.1 and Theorem 9.2 is by an analytical method.
A bit tedious! We may also prove them based on Lyapunov method, which is
relatively simple and will be shown later.

3) Linearization

Theorem 9.3 Suppose that f (x) is a function of C? and f(0)=0. Then,
1) Ifall ReA(A)<0, where A=Df(0), x=0 of x'=f(x) isasymptotically
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stable;
2) If there exists at least one A, with Rel,(A)>0, x=0 of x'=f(x) is

unstable.

Proof. It is immediate applications of Theorem 9.1-9.2 when f(t, x)= f(x) for all

t>0 by linearization. o

Remark 9.2 Linearization results of Theorem 9.3 work for any hyperbolic

equilibrium x=x,. x'=f(x) and Xx'=Df(x,)x have the same dynamical

behavior in the neighborhood of x=X,.

Remark 9.3 When A=Df(x,) has ReA(A)=0, the linearization method fails. See

the following two examples, which show that anything could be possible when a

different perturbation satisfying lim gl

=0 isimposed.
w0 x|

Example 9.1 Consider
X3 :_Xz_xz(X12+X22); X’z =X1+X1(X12+X§),

0 -1
where A:Df(O):(1 0] has A=+i with ReA(A)=0. Since x=0 is a center

of x'=Df(0)x, it is stable but not asymptotically stable.

Introducing the polar coordinate transformation

X, =rcosd; X,=rsing,

dx, dx, dr. dﬁ dx, ,dé@

we have (X,——+X, =r—; X —X,——=r"—; The detail leaves for
dt dt dt dt dt dt
students)
ﬂ=0; %:1“2.
dt dt

Solving the equations yields the solution: r(t)=r;/. So x=0 is still stable (x=0

is a center of the original equations).

Example 9.2 Consider

X, =X, +ax, (X} +X5); X, ==X, +ax,(x’ +x7),
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0 1
where a=0 1is a parameter and A=Df(0):( 1 Oj has A=+i with

ReA(A)=0. Itis a center of x'=D f (0)x.
Introducing the polar coordinate transformation

X, =rcosd; X,=rsing,

we have

dr _
dt

ar®; 99 _
- dt

x=0 isastable focus when a <0 and an unstable focus when a>0.
3. Examples for Stability by Linearization

1) Predator-Prey Model

The Predator-Prey model is given by (Volterra, Italy)
X'=x(a=-By), y=y(rx-9),

where x>0 and y>0; «, f, y and & are given positive parameters. x(t) is

the population of the preys and y(t) is the population of the predators.

There are two equilibriums: (0,0) and (é,%). Denote f(Xx,y)=x(a-pY),
v

g(x, y)=y(rx-9).

For the equilibrium (0, 0), the Jacobian matrix

of of

ox 6_y (a=By —-Bx a 0
og og _( 7y ;/x—§j yxlg_£0 —5)
ax ay )|y

has two eigenvalues A, =a and A, =-J, which is a saddle point. (0,0) of the

Predator-Prey model is unstable by linearization.

For the equilibrium (é, %) , the Jacobian matrix
4



ot of 0o PO

ox  ay _(oc—ﬁy N j ~ Ty
99 99 || vy yx=5)|<; ar
ox  ay )| 5 LB

has the eigenvalues A=xi\Jad with Rei(A)=0, whose stability can not be

determined by linearization.
By separation, we have

7/XX_5dX:a_ﬂydy,

Integrating gives trajectories
(yx=Inx)+(fy-alny)=InC < y*e?' =Cx’’*,

This can be shown qualitatively that the level curves are bounded and closed. The
solutions are periodic.

If y<% < a-py>0, x(t) isincreasing by x'>0.
If y>% < a-py<0, x(t) isdecreasing by x'<O0.

While if x>é < yx—=0>0, y(t) isincreasingby y >0;
Y

if x<é < yx—=0<0, y(t) isdecreasingby y'<0.
v

2) Competing Species Model

X' =x—ax’—cxy, y=y-by*+dxy,
where x>0 and y>0; a,b,c,d are given positive parameters. x(t) is the
population of one species and y(t) is the population of the other species.
If y=0, then x'=x—-ax” is a logistic equation. The population x(t) has a

linear growth rate with a natural limit of x ==. A similar situation holds for y(t) if
a

x =0. The third terms represent interaction between two species.



By solving

0=x-ax’-cxy=x(l-ax-cy); 0=y-by’+dxy=y(l-by+dx),
We have four equilibriums:
1 1 b-c a+d

ab+cd ab+cd”’
If b>c (weak interaction) there are four equilibriums in the domain of interest

(x>0,y>0). If b<c(strong interaction) there are only three equilibriums in the
domain of interest (x >0,y >0).
Denote f(x,y)=x—ax*—cxy and g(x,y)=y—-by?+dxy.

For the equilibrium (0, 0), the Jacobian matrix

of of

ox a_y 1-2ax—cy —CX 10
o9 0g _[ dy 1—2by+dx] X_O_(o 1}
ox oy e

x=0
y=0
has two eigenvalues A, =1 and A, =1. The origin is a source of the linearized

equations. (0, 0) is also a source of the competing species model by linearization.

For the equilibrium (0, %) , the Jacobian matrix

ot af c
ox oy 1-2ax—cy —cX 1_5 0
g ag _[ dy 1—2by+dxj < d
ox  ay )|xo " b

has two eigenvalues A4, =-1 and 4, :1—%. (O, %) is a saddle point if b>c and

asink if b <c. The same dynamical behavior of the competing species model has in

the neighborhood of (0, %) by linearization.

For the equilibrium (i, 0), the Jacobian matrix
a
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of of c

ox oy _[1— 2ax—cy —CX j -1 " a
ag  dg dy 1-2by+dx X% 0 1+g
OX 0y )|t y=0 a

a
y=0

has two eigenvalues 4, =-1 and A, =1+E. (l, 0) is a saddle point no matter of
a a

b>c and b<c. (i, 0) is also a saddle point of the competing species model by
a

linearization.
b-c a+d

For the equilibrium ( :
ab+cd ab+cd

), the Jacobian matrix is

of of

ox a_y 1-2ax-cy —CX

g g _( dy 1—2by+dlex-aﬁ+2d
5 a—y L b-c a+

“ab+cd “abrod
a+d

“abtcd

1 (-a(b-c) -c(b-c)
“ab+cd| d(@+d) -ba+d))

For b>c(weak interaction), A has 2 eigenvalues with negative real part because
11'2’2 =det(A)>0 and ﬂ,l—}—ﬂ,z =Trance(A)<O. So ( b-c a+d

ab+cd  ab+cd
equilibrium for the competing species model by linearization.

) is a stable

For b<c (strong interaction), since A,-A4, =det(A)=(a+d)(b—c)<0, then

b-c a+d
ab+cd’ ab+cd

) is a saddle point of the linearized equations, so does for the

competing species model by linearization. So the species y(t) will die out because

the equilibrium is a saddle point.

4. Summary

e Linearization works for hyperbolic equilibriums, be effective for local.

e Linearization preserves stability property only, not for trajectory structure.

e The proof method of Theorem 9.1 is typical. Hope to understand and know how.
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