Outline

1. Motivation

2. Local Stability by Linearization
3. Examples for Stability by Linearization
4. Summary
5. Motivation

- Stability by linearization is a useful method to study stability of autonomous (dynamic) systems only near an isolate equilibrium. It is a local result.

2. Local Stability by Linearization

1) Linearization

Consider the autonomous (dynamic) system given by

$$
x^{\prime}=f(x),
$$

where $x \in B_{r}(0)=\left\{x \in R^{n} \mid\|x\| \leq r\right\}$ and $f \in C^{1}\left(B_{r}(0)\right)$ with $f(0)=0$, i.e. $x=0$ is an equilibriumt; or $x(t)=0(t \geq 0)$ is a constant solution of $x^{\prime}=f(x)$.

Since $f \in C^{1}\left(B_{r}(0)\right)$, using Tailor expansion, we know that

$$
f(x)=f(0)+D f(0) x+g(x)=D f(0) x+g(x),
$$

where $D f(0)=\left.\frac{\partial f}{\partial x}\right|_{x=0}$ and $g(x)=f(x)-D f(0) x$, satisfying $g(0)=0$;

$$
\begin{aligned}
g(x) & =g(x)-g(0)=\int_{0}^{1} \frac{d}{d s} g(s x) d s=\int_{0}^{1}\left\{\frac{d}{d s} f(s x)-D f(0) x\right\} d s \\
& =\int_{0}^{1}\left\{\frac{d}{d(s x)} f(s x) x-D f(0) x\right\} d s=\int_{0}^{1}\{D f(s x) x-D f(0) x\} d s \\
& =\int_{0}^{1}\{D f(s x)-D f(0)\} x d s .
\end{aligned}
$$

It is noted that $\|s x\| \leq\|x\|$ as $0 \leq s \leq 1$. Thus

$$
\|g(x)\|=\sup _{\{y:\| \|\| \|\|x\|\}}\|D f(y)-D f(0)\|\|x\| .
$$

Then

$$
\lim _{\|x\| \rightarrow 0} \frac{\|g(x)\|}{\|x\|}=\lim _{\|x\| \rightarrow 0} \sup _{\{y:\|y\|\| \|\| \| \|}\|D f(y)-D f(0)\|=0 .
$$

Therefore its linearized system is given by

$$
x^{\prime}=A x,
$$

where $A=D f(0)$.

2) Linear Systems with Perturbation

Consider

$$
x^{\prime}=A x+g(t, x)
$$

where $g(t, x)$ is continuous and locally Lipschitz in U containing the origin.

Theorem 9.1 (Stability Theorem) Let $g(t, x)$ be continuous and locally Lipschitz in U containing the origin. If

$$
\lim _{\|x\| \rightarrow 0} \frac{\|g(t, x)\|}{\|x\|}=0
$$

holds uniformly in t, where $t \geq t_{0} \geq 0$ and A has all eigenvalues with negative real part, i.e. $\operatorname{Re} \lambda_{j}(A)<0$ for $j=1,2, \cdots, n$, then $x=0$ of $x^{\prime}=A x+g(t, x)$ is uniformly asymptotically stable.
Proof. Since $\lim _{\|x\| \rightarrow 0} \frac{\|g(t, x)\|}{\|x\|}=0$ holds uniformly, there exists $\varepsilon>0$ for any given $b>0$ such that

$$
\|g(t, x)\| \leq b\|x\| \text { for all } t \geq 0,
$$

provided $\|x\| \leq \varepsilon$. Then $g(t, 0) \equiv 0$ for all $t \geq 0$, i.e. $x=0$ is equilibrium of $x^{\prime}=A x+g(t, x)$. Since $\operatorname{Re} \lambda_{j}(A)<0$ for $j=1,2, \cdots, n$, we can find $K>0$ and $\mu>0$ (Clue: using the formula of $e^{A t}$) s.t.

$$
\left\|e^{A\left(t-t_{0}\right)}\right\| \leq K e^{-\mu\left(t-t_{0}\right)} \text { for } t \geq t_{0}
$$

For any $\left\|x_{0}\right\| \leq \delta=\frac{\varepsilon}{K}$ and $t_{0} \geq 0$, there exists a unique solution of
$x^{\prime}=A x+g(t, x)$, denoted by $x\left(t, t_{0}, x_{0}\right)$ for $t \in\left[t_{0}, \omega_{+}\right)$. We will show that $\omega_{+}=\infty$. We apply the formula given by Problem 2 of Homework in Lecture 6 to get

$$
x\left(t, t_{0}, x_{0}\right)=e^{A\left(t-t_{0}\right)} x_{0}+\int_{t_{0}}^{t} e^{A(t-s)} g\left(s, x\left(s, t_{0}, x_{0}\right)\right) d s, t \in\left[t_{0}, \omega_{+}\right) .
$$

Then,

$$
\left\|x\left(t, t_{0}, x_{0}\right)\right\| \leq K e^{-\mu\left(t-t_{0}\right)}\left\|x_{0}\right\|+\int_{t_{0}}^{t} K e^{-\mu(t-s)}\left\|g\left(s, x\left(s, t_{0}, x_{0}\right)\right)\right\| d s, t \in\left[t_{0}, \omega_{+}\right) .
$$

As long as $\left\|x\left(t, t_{0}, x_{0}\right)\right\| \leq \varepsilon$ for all $t \in\left[t_{0}, \omega_{+}\right)$, then

$$
\left\|g\left(t, x\left(t, t_{0}, x_{0}\right)\right)\right\| \leq b\left\|x\left(t, t_{0}, x_{0}\right)\right\|, \quad t \in\left[t_{0}, \omega_{+}\right)
$$

So we have

$$
\left\|x\left(t, t_{0}, x_{0}\right)\right\| \leq K e^{-\mu\left(t-t_{0}\right)}\left\|x_{0}\right\|+K b \int_{t_{0}}^{t} e^{-\mu(t-s)}\left\|x\left(s, t_{0}, x_{0}\right)\right\| d s, \quad t \in\left[t_{0}, \omega_{+}\right) .
$$

Multiplying $e^{\mu\left(t-t_{0}\right)}$ on both sides, we have

$$
e^{\mu\left(t-t_{0}\right)}\left\|x\left(t, t_{0}, x_{0}\right)\right\| \leq K\left\|x_{0}\right\|+K b \int_{t_{0}}^{t} e^{\mu\left(s-t_{0}\right)}\left\|x\left(s, t_{0}, x_{0}\right)\right\| d s, \quad t \in\left[t_{0}, \omega_{+}\right) .
$$

By Gronwall inequality we obtain

$$
e^{\mu\left(t-t_{0}\right)}\left\|x\left(t, t_{0}, x_{0}\right)\right\| \leq K\left\|x_{0}\right\| e^{K b\left(t-t_{0}\right)}, t \in\left[t_{0}, \omega_{+}\right),
$$

i.e.

$$
\left\|x\left(t, t_{0}, x_{0}\right)\right\| \leq K\left\|x_{0}\right\| e^{-(\mu-K b)\left(t-t_{0}\right)}, t \in\left[t_{0}, \omega_{+}\right) .
$$

Since $b>0$ is arbitrarily and only local result we concern, we choose $b=\frac{\mu}{2 K}>0$, and then we have

$$
\left\|x\left(t, t_{0}, x_{0}\right)\right\| \leq K\left\|x_{0}\right\| e^{-\frac{\mu}{2}\left(t-t_{0}\right)} \leq \varepsilon e^{-\frac{\mu}{2}\left(t-t_{0}\right)}<\varepsilon, \quad t \in\left[t_{0}, \omega_{+}\right) .
$$

It follows that $\omega_{+}=\infty$ by Extension Theorem. Since $\delta>0$ and $b>0$ are independent of $t_{0} \geq 0, x=0$ is uniformly asymptotically stable, in fact it is exponentially stable.

Theorem 9.2 (Unstability Theorem) Let $g(t, x)$ be continuous and locally Lipschitz in U containing the origin. If

$$
\lim _{\|x\| \rightarrow 0} \frac{\|g(t, x)\|}{\|x\|}=0
$$

holds uniformly in t, where $t \geq t_{0} \geq 0$ and A has at least one eigenvalue with
positive real part, i.e. $\operatorname{Re} \lambda_{j_{0}}(A)>0$, then $x=0$ of $x^{\prime}=A x+g(t, x)$ is unstable.

Proof. Suppose that A has eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ repeated according to their (algebraic) multiplicity. There exists an invertible matrix P such that $A=P J P^{-1}$, where J is in Jordan normal form, i.e. $J=\operatorname{diag}\left(J_{i}\right)$, where

$$
J_{i}=\left(\begin{array}{ccccc}
\lambda_{n_{i-1}+1} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{n_{i-1}+2} & 1 & \vdots & 0 \\
0 & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \lambda_{n_{i}-1} & 1 \\
0 & \cdots & 0 & 0 & \lambda_{n_{i}}
\end{array}\right)_{n_{i} \times n_{i}}
$$

where $i=1,2, \cdots, r ; \sum_{i=1}^{r} n_{i}=n ; n_{0}=0$. In order to get the elements of the off diagonal line of J_{i}, all are the given scalar $\eta>0$, we need a technique to introduce a matrix given by

$$
H=\operatorname{diag}\left(\eta, \eta^{2}, \cdots, \eta^{n}\right)
$$

which has $H^{-1}=\operatorname{diag}\left(\eta^{-1}, \eta^{-2}, \cdots, \eta^{-n}\right)$. Then,

$$
C=H^{-1} J H=\operatorname{diag}\left(\bar{J}_{i}\right)
$$

where

$$
\bar{J}_{i}=\left(\begin{array}{ccccc}
\lambda_{n_{i-1}+1} & \eta & 0 & \cdots & 0 \\
0 & \lambda_{n_{i-1}+2} & \eta & \vdots & 0 \\
0 & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \lambda_{n_{i}-1} & \eta \\
0 & \cdots & 0 & 0 & \lambda_{n_{i}}
\end{array}\right)_{n_{i} \times n_{i}} .
$$

Then, by the transformation $x=P H y, x^{\prime}=A x+g(t, x)$ is transformed into the form of

$$
y^{\prime}=C y+h(t, y)
$$

where $h(t, y)=H^{-1} P^{-1} g(t, P H y)$. Since $\|g(t, x)\| \leq b\|x\|$ for $\|x\| \leq \delta$, it follows that

$$
\|h(t, y)\| \leq\left\|H^{-1} P^{-1}\right\|\|P H\| b\|y\| \text { for }\|y\| \leq \frac{\delta}{\|P H\|}
$$

We now need only to prove that $y(t)$ will leaves away from the origin when $y(t)$ is in the neighborhood of the origin.

The $i^{\text {th }}$ component of $y^{\prime}=C y+h(t, y)$ has the form of either

$$
y_{i}^{\prime}=\lambda_{i} y_{i}+h_{i}(t, y)
$$

or

$$
y_{i}^{\prime}=\lambda_{i} y_{i}+\eta y_{i+1}+h_{i}(t, y) .
$$

Denoted by j the indices for which $\operatorname{Re} \lambda_{j}>0$, by k the indices for which $\operatorname{Re} \lambda_{k} \leq 0$. Let $R(t)=\sum_{j}\left|y_{j}(t)\right|^{2}, r(t)=\sum_{k}\left|y_{k}(t)\right|^{2}$ and choose $\eta>0$ s.t.

$$
0<6 \eta<\operatorname{Re} \lambda_{j} \text { for all } j ;
$$

and then for the given $\eta>0$, there exists $0<\delta \ll 1$ s.t.

$$
\|h(t, y)\| \leq \eta\|y\| \text { for }\|y\| \leq \delta
$$

Suppose that $y(t)$ is a solution of $y^{\prime}=C y+h(t, y)$ with $y\left(t_{0}\right)=y_{0}$ satisfying $\left\|y_{0}\right\| \leq \delta$ and $r\left(t_{0}\right)<R\left(t_{0}\right)$. Then, as long as $\|y(t)\| \leq \delta$ and $r(t)<R(t)$, notice that $y_{j}(t)$ may be complex valued because of a possible complex value of λ_{j}, we have

$$
\begin{aligned}
R^{\prime}(t) & =\left\{\sum_{j}\left|y_{j}(t)\right|^{2}\right\}^{\prime}=\sum_{j}\left\{\left(y_{j}(t) \cdot \bar{y}_{j}(t)\right)^{2}\right\}^{\prime}=2 \sum_{j}\left(y_{j}^{\prime}(t) \cdot \bar{y}_{j}(t)+y_{j}(t) \bar{y}_{j}^{\prime}(t)\right) \\
& =2 \sum_{j} \operatorname{Re}\left(y_{j}^{\prime}(t) \cdot \bar{y}_{j}(t)\right) \\
& =2 \sum_{j}\left\{\operatorname{Re}\left(\lambda_{j} y_{j}(t) \cdot \bar{y}_{j}(t)\right)+\left[\eta \operatorname{Re}\left(y_{j+1}(t) \cdot \bar{y}_{j}(t)\right)\right]+\operatorname{Re}\left(\bar{y}_{j}(t) h_{j}(t, y)\right)\right\},
\end{aligned}
$$

where the term in brackets [] appears or not appears. By Cauchy-Schwartz inequality we have

$$
\begin{aligned}
& \left|\sum_{j} \operatorname{Re}\left(y_{j+1}(t) \cdot \bar{y}_{j}(t)\right)\right| \leq \sum_{j}\left|y_{j+1}(t) \cdot \bar{y}_{j}(t)\right| \leq \sqrt{\sum_{j}\left|y_{j+1}(t)\right|^{2} \cdot \sum_{j}\left|\bar{y}_{j}(t)\right|^{2}} \leq R(t) ; \\
& \left|\sum_{j} \operatorname{Re}\left(\bar{y}_{j}(t) h_{j}(t, y)\right)\right| \leq \sum_{j}\left|y_{j}(t) h_{j}(t, y)\right|
\end{aligned}
$$

$$
\leq \sqrt{\sum_{j}\left|y_{j}(t)\right|^{2} \sum_{j}\left|h_{j}(t, y)\right|^{2}} \leq R^{\frac{1}{2}}(t)\|h(t, y)\| .
$$

Since $\|y(t)\| \leq \delta$ and $r(t)<R(t)$ are assumed, we have

$$
R^{\frac{1}{2}}(t)\|h(t, y)\| \leq R^{\frac{1}{2}}(t) \eta\|y(t)\| \leq R^{\frac{1}{2}}(t) \eta \sqrt{R(t)+r(t)} \leq R^{\frac{1}{2}}(t) \eta \sqrt{2 R(t)} \leq 2 \eta R(t)
$$

and

$$
\sum_{j} \operatorname{Re}\left(\lambda_{j} y_{j}(t) \cdot \bar{y}_{j}(t)\right)>6 \eta \sum_{j} y_{j}(t) \cdot \bar{y}_{j}(t)=6 \eta \sum_{j}\left|y_{j}(t)\right|^{2}=6 \eta R(t) .
$$

Therefore, we have the inequality given by

$$
\frac{1}{2} R^{\prime}(t)>6 \eta R(t)-\eta R(t)-2 \eta R(t)=3 \eta R(t) .
$$

A similar way for $r(t)$ by using $\operatorname{Re} \lambda_{k} \leq 0$ yields

$$
\frac{1}{2} r^{\prime}(t)<\eta r(t)+2 \eta R(t) \quad \text { (Detail proof is for homework). }
$$

As long as $\|y(t)\| \leq \delta$ and $r(t)<R(t)$, we have

$$
\frac{1}{2}\left(R^{\prime}(t)-r^{\prime}(t)\right)>\eta(3 R(t)-r(t)-2 R(t))=\eta(R(t)-r(t)) .
$$

Solving this inequality with $r\left(t_{0}\right)<R\left(t_{0}\right)$, we have

$$
R(t)-r(t)>\left(R\left(t_{0}\right)-r\left(t_{0}\right)\right) e^{2 \eta\left(t-t_{0}\right)} \text { for all } t \geq t_{0} \text { s.t }\|y(t)\| \leq \delta \text { and } r(t)<R(t)
$$

Then

$$
\begin{aligned}
\|y(t)\|^{2} & =\sum_{j}\left|y_{j}(t)\right|^{2}+\sum_{k}\left|y_{k}(t)\right|^{2} \geq \sum_{j}\left|y_{j}(t)\right|^{2}-\sum_{k}\left|y_{k}(t)\right|^{2} \\
& =R(t)-r(t)>\left(R\left(t_{0}\right)-r\left(t_{0}\right)\right) e^{2 \eta\left(t-t_{0}\right)}
\end{aligned}
$$

for all $t \geq t_{0}$ once $\|y(t)\| \leq \delta$ and $r(t)<R(t)$. So this solution $y(t)$ leaves the domain given by $\|y\| \leq \delta$, this implies that $x=0$ is unstable.

Remark 9.1 The proof of Theorem 9.1 and Theorem 9.2 is by an analytical method. A bit tedious! We may also prove them based on Lyapunov method, which is relatively simple and will be shown later.

3) Linearization

Theorem 9.3 Suppose that $f(x)$ is a function of C^{2} and $f(0)=0$. Then,

1) If all $\operatorname{Re} \lambda(A)<0$, where $A=D f(0), x=0$ of $x^{\prime}=f(x)$ is asymptotically
stable;
2) If there exists at least one λ_{0} with $\operatorname{Re} \lambda_{0}(A)>0, x=0$ of $x^{\prime}=f(x)$ is unstable.

Proof. It is immediate applications of Theorem 9.1-9.2 when $f(t, x) \equiv f(x)$ for all $t \geq 0$ by linearization.

Remark 9.2 Linearization results of Theorem 9.3 work for any hyperbolic equilibrium $\quad x=x_{0} . \quad x^{\prime}=f(x)$ and $x^{\prime}=D f\left(x_{0}\right) x$ have the same dynamical behavior in the neighborhood of $x=x_{0}$.

Remark 9.3 When $A=D f\left(x_{0}\right)$ has $\operatorname{Re} \lambda(A)=0$, the linearization method fails. See the following two examples, which show that anything could be possible when a different perturbation satisfying $\lim _{\|x\| \rightarrow 0} \frac{\|g(x)\|}{\|x\|}=0$ is imposed.

Example 9.1 Consider

$$
x_{1}^{\prime}=-x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right) ; x_{2}^{\prime}=x_{1}+x_{1}\left(x_{1}^{2}+x_{2}^{2}\right),
$$

where $A=D f(0)=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ has $\lambda= \pm i$ with $\operatorname{Re} \lambda(A)=0$. Since $x=0$ is a center of $x^{\prime}=D f(0) x$, it is stable but not asymptotically stable.

Introducing the polar coordinate transformation

$$
x_{1}=r \cos \theta ; \quad x_{2}=r \sin \theta,
$$

we have $\left(x_{1} \frac{d x_{1}}{d t}+x_{2} \frac{d x_{2}}{d t}=r \frac{d r}{d t} ; x_{1} \frac{d x_{2}}{d t}-x_{2} \frac{d x_{1}}{d t}=r^{2} \frac{d \theta}{d t}\right.$; The detail leaves for students)

$$
\frac{d r}{d t}=0 ; \quad \frac{d \theta}{d t}=1+r^{2} .
$$

Solving the equations yields the solution: $r(t)=r_{0}^{2}$. So $x=0$ is still stable ($x=0$ is a center of the original equations).

Example 9.2 Consider

$$
x_{1}^{\prime}=x_{2}+a x_{1}\left(x_{1}^{2}+x_{2}^{2}\right) ; x_{2}^{\prime}=-x_{1}+a x_{2}\left(x_{1}^{2}+x_{2}^{2}\right),
$$

where $\quad a \neq 0 \quad$ is \quad a parameter and $A=D f(0)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ has $\lambda= \pm i \quad$ with $\operatorname{Re} \lambda(A)=0$. It is a center of $x^{\prime}=D f(0) x$.

Introducing the polar coordinate transformation

$$
x_{1}=r \cos \theta ; \quad x_{2}=r \sin \theta
$$

we have

$$
\frac{d r}{d t}=a r^{3} ; \quad \frac{d \theta}{d t}=-1 .
$$

$x=0$ is a stable focus when $a<0$ and an unstable focus when $a>0$.

3. Examples for Stability by Linearization

1) Predator-Prey Model

The Predator-Prey model is given by (Volterra, Italy)

$$
x^{\prime}=x(\alpha-\beta y), \quad y^{\prime}=y(\gamma x-\delta),
$$

where $x>0$ and $y>0 ; \alpha, \beta, \gamma$ and δ are given positive parameters. $x(t)$ is the population of the preys and $y(t)$ is the population of the predators.

There are two equilibriums: $(0,0)$ and $\left(\frac{\delta}{\gamma}, \frac{\alpha}{\beta}\right)$. Denote $f(x, y)=x(\alpha-\beta y)$, $g(x, y)=y(\gamma x-\delta)$.

For the equilibrium $(0,0)$, the Jacobian matrix

$$
\left.\left(\begin{array}{cc}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right)\right|_{\substack{x=0 \\
y=0}}=\left.\left(\begin{array}{cc}
\alpha-\beta y & -\beta x \\
\gamma y & \gamma x-\delta
\end{array}\right)\right|_{\substack{x=0 \\
y=0}}=\left(\begin{array}{cc}
\alpha & 0 \\
0 & -\delta
\end{array}\right)
$$

has two eigenvalues $\lambda_{1}=\alpha$ and $\lambda_{2}=-\delta$, which is a saddle point. $(0,0)$ of the Predator-Prey model is unstable by linearization.

For the equilibrium $\left(\frac{\delta}{\gamma}, \frac{\alpha}{\beta}\right)$, the Jacobian matrix

$$
\left.\left(\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right)\right|_{\substack{x=\frac{\delta}{\gamma} \\
y=\frac{\alpha}{\beta}}}=\left.\left(\begin{array}{cc}
\alpha-\beta y & -\beta x \\
\gamma y & \gamma x-\delta
\end{array}\right)\right|_{\substack{x=\frac{\delta}{\gamma} \\
y=\frac{\alpha}{\beta}}}=\left(\begin{array}{cc}
0 & -\frac{\beta \delta}{\gamma} \\
\frac{\alpha \gamma}{\beta} & 0
\end{array}\right)
$$

has the eigenvalues $\lambda= \pm i \sqrt{\alpha \delta}$ with $\operatorname{Re} \lambda(A)=0$, whose stability can not be determined by linearization.

By separation, we have

$$
\frac{\gamma x-\delta}{x} d x=\frac{\alpha-\beta y}{y} d y,
$$

Integrating gives trajectories

$$
(\gamma x-\delta \ln x)+(\beta y-\alpha \ln y)=\ln C \quad \Leftrightarrow \quad y^{\alpha} e^{-\beta y}=C x^{-\delta} e^{\gamma x} .
$$

This can be shown qualitatively that the level curves are bounded and closed. The solutions are periodic.

If $y<\frac{\alpha}{\beta} \Leftrightarrow \alpha-\beta y>0, x(t)$ is increasing by $x^{\prime}>0$.

If $y>\frac{\alpha}{\beta} \Leftrightarrow \alpha-\beta y<0, x(t)$ is decreasing by $x^{\prime}<0$.
While if $x>\frac{\delta}{\gamma} \Leftrightarrow \gamma x-\delta>0, y(t)$ is increasing by $y^{\prime}>0$;
if $x<\frac{\delta}{\gamma} \Leftrightarrow \gamma x-\delta<0, y(t)$ is decreasing by $y^{\prime}<0$.

2) Competing Species Model

$$
x^{\prime}=x-a x^{2}-c x y, \quad y^{\prime}=y-b y^{2}+d x y,
$$

where $x \geq 0$ and $y \geq 0 ; a, b, c, d$ are given positive parameters. $x(t)$ is the population of one species and $y(t)$ is the population of the other species.

If $y=0$, then $x^{\prime}=x-a x^{2}$ is a logistic equation. The population $x(t)$ has a linear growth rate with a natural limit of $x=\frac{1}{a}$. A similar situation holds for $y(t)$ if $x=0$. The third terms represent interaction between two species.

By solving

$$
0=x-a x^{2}-c x y=x(1-a x-c y) ; \quad 0=y-b y^{2}+d x y=y(1-b y+d x),
$$

We have four equilibriums:

$$
(0,0) ;\left(0, \frac{1}{b}\right) ;\left(\frac{1}{a}, 0\right) ;\left(\frac{b-c}{a b+c d}, \frac{a+d}{a b+c d}\right) .
$$

If $b \geq c$ (weak interaction) there are four equilibriums in the domain of interest ($x \geq 0, y \geq 0$). If $b<c$ (strong interaction) there are only three equilibriums in the domain of interest ($x \geq 0, y \geq 0$).

Denote $f(x, y)=x-a x^{2}-c x y$ and $g(x, y)=y-b y^{2}+d x y$.
For the equilibrium $(0,0)$, the Jacobian matrix

$$
\left.\left(\begin{array}{cc}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right)\right|_{\substack{x=0 \\
y=0}}=\left.\left(\begin{array}{cc}
1-2 a x-c y & -c x \\
d y & 1-2 b y+d x
\end{array}\right)\right|_{\substack{x=0 \\
y=0}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

has two eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=1$. The origin is a source of the linearized equations. $(0,0)$ is also a source of the competing species model by linearization.

For the equilibrium $\left(0, \frac{1}{b}\right)$, the Jacobian matrix

$$
\left.\left(\begin{array}{cc}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right)\right|_{\substack{x=0 \\
y=\frac{1}{b}}}=\left.\left(\begin{array}{cc}
1-2 a x-c y & -c x \\
d y & 1-2 b y+d x
\end{array}\right)\right|_{\substack{x=0 \\
y=\frac{1}{b}}}=\left(\begin{array}{cc}
1-\frac{c}{b} & 0 \\
\frac{d}{b} & -1
\end{array}\right)
$$

has two eigenvalues $\lambda_{1}=-1$ and $\lambda_{2}=1-\frac{c}{b} .\left(0, \frac{1}{b}\right)$ is a saddle point if $b>c$ and a sink if $b<c$. The same dynamical behavior of the competing species model has in the neighborhood of ($0, \frac{1}{b}$) by linearization.

For the equilibrium $\left(\frac{1}{a}, 0\right)$, the Jacobian matrix

$$
\left.\left(\begin{array}{cc}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right)\right|_{\substack{x=\frac{1}{a} \\
y=0}}=\left.\left(\begin{array}{cc}
1-2 a x-c y & -c x \\
d y & 1-2 b y+d x
\end{array}\right)\right|_{\substack{x=\frac{1}{a} \\
y=0}}=\left(\begin{array}{cc}
-1 & -\frac{c}{a} \\
0 & 1+\frac{d}{a}
\end{array}\right)
$$

has two eigenvalues $\lambda_{1}=-1$ and $\lambda_{2}=1+\frac{d}{a} \cdot\left(\frac{1}{a}, 0\right)$ is a saddle point no matter of $b>c$ and $b<c .\left(\frac{1}{a}, 0\right)$ is also a saddle point of the competing species model by linearization.

For the equilibrium $\left(\frac{b-c}{a b+c d}, \frac{a+d}{a b+c d}\right)$, the Jacobian matrix is

$$
\begin{aligned}
\left.\left(\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right)\right|_{\substack{x=\frac{b-c}{b-c d} \\
y=\frac{a+d}{a b+c d}}} & \left.=\left(\begin{array}{cc}
1-2 a x-c y & -c x \\
d y & 1-2 b y+d x
\end{array}\right)\right)_{\substack{x=\frac{b-c}{a b+d} \\
y=\frac{a+d}{a b+c d}}} \\
& =\frac{1}{a b+c d}\left(\begin{array}{cc}
-a(b-c) & -c(b-c) \\
d(a+d) & -b(a+d)
\end{array}\right)
\end{aligned}
$$

For $b>c$ (weak interaction), A has 2 eigenvalues with negative real part because $\lambda_{1} \cdot \lambda_{2}=\operatorname{det}(A)>0$ and $\lambda_{1}+\lambda_{2}=\operatorname{Trance}(A)<0$. So $\left(\frac{b-c}{a b+c d}, \frac{a+d}{a b+c d}\right)$ is a stable equilibrium for the competing species model by linearization.

For $b<c$ (strong interaction), since $\lambda_{1} \cdot \lambda_{2}=\operatorname{det}(A)=(a+d)(b-c)<0$, then ($\frac{b-c}{a b+c d}, \frac{a+d}{a b+c d}$) is a saddle point of the linearized equations, so does for the competing species model by linearization. So the species $y(t)$ will die out because the equilibrium is a saddle point.

4. Summary

- Linearization works for hyperbolic equilibriums, be effective for local.
- Linearization preserves stability property only, not for trajectory structure.
- The proof method of Theorem 9.1 is typical. Hope to understand and know how.

